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§I. Sharp-Interface Model [Li, Scheel, 2024]
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Curvature flow: c = V − Dκ

c: Normal velocity
V : Propagation velocity of the straight-line interface ( curling-up of straight line: c = V )
D: Line tension ( curve-shortening flow: c = −Dκ )
The wave front is a planar curve written in the polar coordinate

γ(t, r) = (r cos(Φ(t, r)), r sin(Φ(t, r)))
Evolution equation:

Φt = DrΦrr − V (1 + r2Φ2
r)3/2 + Dr2Φ3

r + 2DΦr

r(1 + r2Φ2
r)

ODE from rotating wave ansatz Φ(t, r) = ϕ(r) − ωt:
ℓ = ϕr

α = 1/r

τ = (r3 − R3)/3
⇒

{
ℓτ = − ω

D(α2 + ℓ2) + V
D(α2 + ℓ2)3/2 − 2α3ℓ − αℓ3

ατ = −α4

§I. Theorem 1: Existence of rigidly rotating spirals

Fix D, V > 0 and let (α(τ ; ω), ℓ(τ ; ω)) denote the solution of the ODE with initial condition
(α(0), ℓ(0)) = (α∗, 0) and parameter ω. Then there exists, for every α∗ > 0, a unique ω∗ such
that limτ→∞ ℓ(τ ; ω∗) = ω∗/V . Moreover, ω∗ is strictly increasing in α∗.

§I. Proof of Theorem 1: Shooting argument

Unique correspondence between core
radius R and the angular velocity ω

Solutions are Archimedean spirals in the
farfield (r → ∞):

ϕ(r) = kr + const · log r + O(r−3)
Wavenumber k = ω/V

§I. Theorem 2: Asymptotic expansion in the large-core limit

Given α∗ > 0, let ω∗ and ℓ = λ(α) be the solution from Theorem 1. We then have the expan-
sions

ω∗ = V α∗ − σ0
3
√

2D2V α
5/3
∗ + O(α7/3

∗ ),

λ(α) =

√
ω2

∗
V 2 − α2 + O(ωα), for α < (1 − δ)ω∗

V
and some δ > 0,

where σ0 = 1.01879297 . . . is determined by the first zero of the derivative of the Airy function,
that is, Ai′(−σ0) = 0, Ai′(−σ) > 0 for σ < σ0.

§I. Proof of Theorem 2: Fenichel’s Theorem, Krupa & Szmolyan

§I. Theorem 3: Stability of Solutions

For all ε > 0, there exists δ > 0 so that for all φ ∈ C2
loc([R, ∞)) with

sup
r

(|r−2φ| + |r−1φr| + |φrr|) < δ, φr(R) = 0,

we have that the solution Φ(t, r) with initial condition ϕ∗(r) + φ(r) to the evolution equation
satisfies ∥Φ(t, ·)∥C0 < ε for all t > 0.

1. Local well-posedness and regularity: there exists a unique global solution to the evolution
equation with the initial data φr(R) = 0 and takes the form φt ∼ 1

r2 φrr + φr as r → ∞.
2. A priori bounds on Φ and Φr from super- and sub-solution (the comparison principle).

§I. Numerical Computation: Archimedean Spirals

§II. Transverse Instability [Cortez, Li, Mihm, Xu, Yu, Scheel, 2025]

Curvature Flow: c = V + D2κ − D4κss

s: Arclength
Geometric singular perturbation at D2 = D4 = 0
Rigidly rotating spiral for large core radius Ri ≫ 1
Hopf bifurcation as D2 changes sign, exhibiting instabilities

Evolution Equation:
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D4
M4 + Φrrr

D4
M8

(
6r3Φ4

r + Φrr

(
10r4Φ3

r + 10r2Φr

)
+ 2rΦ2

r − 4
r

)
+ Φ3

rr
D4
M8

(
−15r4Φ2

r + 3r2) + Φ2
rr

D4
M8

(
−21r3Φ3

r + 33rΦr

)
+ Φrr

D4
M8

(
−r4Φ6

r − 19r2Φ4
r + 36Φ2

r

)
+ Φrr

D2
M2

− Φ7
r
3D4r3

M8 − Φ5
r
17D4r

M8 + Φ3
r

(
D2M6r2 + 4D4

)
M8r

+ Φr
2D2
M2r

− MV

r
.

§II. Transverse Instability: Theorems

Fix V > 0, D4 > 0, and D2. Given “compatible boundary conditions” at r = Ri and all Ri ≫ 1.

Result 1: There exists a rigidly rotating spiral wave solution with frequency

ω = V

sin(ϑi)
R−1

i + O(R−2
i ),

where ϑi ∈ (0, π/2) is the contact angle between the curve and the inner circle.

Result 2: There exists a Dcrit
2 (Ri, D4, V ) = − 3

√
81
4 (7

√
7 − 17)D4V 2 cot2(ϑi) < 0 such that

No unstable eigenvalues for D2 > Dcrit
2 .

Hopf instability with super-exponential growth as r → ∞ for D2 < Dcrit
2 .

An initial Gaussian perturbation is advected to the outer boundary. Both time series are for
Ri = 50, Ro = 75, ϑi = π/2 − 0.1, D4 = V = 1, so that D2,crit ∼ −0.67. Top: D2 = −0.5; Bottom:
D2 = −0.6.

§III. Phase Oscillator Model [Work in Progress]

Reaction-Diffusion Equation on
Ω = {R− ≤ |x| ≤ R+} ⊂ R2{

ut = ∆r,φu + f (u; µ), x ∈ Ω,

∂νu = 0 x ∈ ∂Ω.

Relative equilibrium via
corotating frame ϕ = φ − ωt
f (u; µ): 2π-periodic in u0 = ∆r,ϕu − ωuϕ + f (u; µ),
0 = u(r, ϕ + 2π) − u(r, ϕ) − 2πℓ,

0 = ur|r=R−,R+

Waves in a Simple, Excitable or Oscillatory, Reaction-Diffusion Model Ermentrout & Rinzel 1981.

§III. Existence of Spirals on Bounded Annulus

For ℓ ̸= 0, there exists a solution (u, ω) to the BVP. Moreover, u is strictly increasing in ϕ.

Proof: Global homotopy: f (u; τ ) = τf (u) + (1 − τ ) -
∫

f .

More Open Problems:
1. Existence of spirals on unbounded annulus

u bounded annulus
loc, unif−−−−−→ u unbounded annulus

2. Wave train selection
ω = ω(k; µ), k : wavenumber
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Conjectured in [Ermentrout & Rinzel 1981]
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