

§I. Sharp-Interface Model [Li, Scheel, 2024]

- Curvature flow: $c = V D\kappa$
- c: Normal velocity
- V: Propagation velocity of the straight-line interface (curling-up of straight line: c = V)
- D: Line tension (curve-shortening flow: $c = -D\kappa$)
- The wave front is a planar curve written in the **polar coordinate**

$$\gamma(t, r) = (r \cos(\Phi(t, r)), r \sin(\Phi(t, r)))$$

Evolution equation:

$$\Phi_t = \frac{Dr\Phi_{rr} - V(1 + r^2\Phi_r^2)^{3/2} + Dr^2\Phi_r^3 + 2D\Phi_r}{r(1 + r^2\Phi_r^2)}$$

ODE from rotating wave ansatz $\Phi(t, r) = \phi(r) - \omega t$:

$$\begin{cases} \ell = \phi_r \\ \alpha = 1/r \\ \tau = (r^3 - R^3)/3 \end{cases} \Rightarrow \begin{cases} \ell_\tau = -\frac{\omega}{D}(\alpha^2 + \ell^2) + \frac{V}{D}(\alpha^2 + \ell^2)^{3/2} - 2\alpha^3 \ell - \alpha \ell^3 \\ \alpha_\tau = -\alpha^4 \end{cases}$$

§I. Theorem 1: Existence of rigidly rotating spirals

Fix D, V > 0 and let $(\alpha(\tau; \omega), \ell(\tau; \omega))$ denote the solution of the ODE with initial condition $(\alpha(0), \ell(0)) = (\alpha_*, 0)$ and parameter ω . Then there exists, for every $\alpha_* > 0$, a unique ω_* such that $\lim_{\tau\to\infty} \ell(\tau;\omega_*) = \omega_*/V$. Moreover, ω_* is strictly increasing in α_* .

§I. Proof of Theorem 1: Shooting argument

Given $\alpha_* > 0$, let ω_* and $\ell = \lambda(\alpha)$ be the solution from Theorem 1. We the sions

$$\omega_{*} = V\alpha_{*} - \sigma_{0}\sqrt[3]{2D^{2}V}\alpha_{*}^{5/3} + O(\alpha_{*}^{7/3}),$$

$$\Lambda(\alpha) = \sqrt{\frac{\omega_{*}^{2}}{V^{2}} - \alpha^{2}} + O(\omega\alpha), \quad \text{for } \alpha < (1 - \delta)\frac{\omega_{*}}{V} \ \alpha_{*}^{6/3} + O(\omega\alpha),$$

where $\sigma_0 = 1.01879297...$ is determined by the first zero of the derivative of the Airy function, that is, $\operatorname{Ai}'(-\sigma_0) = 0$, $\operatorname{Ai}'(-\sigma) > 0$ for $\sigma < \sigma_0$.

University of Minnesota

Anchored Spirals in Sharp-Interface and Phase Oscillator Models

Nan Li Arnd Scheel

§I. Proof of Theorem 2: Fenichel's Theorem, Krupa & Szmolyan

§I. Theorem 3: Stability of Solutions

For all $\varepsilon > 0$, there exists $\delta > 0$ so that for all $\varphi \in C^2_{loc}([R,\infty))$ with $\sup(|r^{-2}\varphi| + |r^{-1}\varphi_r| + |\varphi_{rr}|) < \delta,$

we have that the solution $\Phi(t,r)$ with initial condition $\phi_*(r) + \varphi(r)$ to the evolution equation satisfies $\|\Phi(t,\cdot)\|_{C^0} < \varepsilon$ for all t > 0.

- Local well-posedness and regularity: there exists a unique global solution to the evolution equation with the initial data $\varphi_r(R) = 0$ and takes the form $\varphi_t \sim \frac{1}{r^2} \varphi_{rr} + \varphi_r$ as $r \to \infty$.
- 2. A priori bounds on Φ and Φ_r from super- and sub-solution (the comparison principle).

§II. Transverse Instability [Cortez, Li, Mihm, Xu, Yu, Scheel, 2025]

Curvature Flow: $c = V + D_2\kappa - D_4\kappa_{ss}$

- s: Arclength
- Geometric singular perturbation at $D_2 = D_4 = 0$
- Rigidly rotating spiral for large core radius $R_{\rm i} \gg 1$
- Hopf bifurcation as D_2 changes sign, exhibiting instabilities

Evolution Equation:

$$\begin{split} \Phi_t &= -\Phi_{rrrr} \frac{D_4}{M^4} + \Phi_{rrr} \frac{D_4}{M^8} \left(6r^3 \Phi_r^4 + \Phi_{rr} \left(10r^4 \Phi_r^3 + 10r^2 \Phi_r \right) + 2r \Phi_r^2 - \frac{4}{r} \right) \\ &+ \Phi_{rr}^3 \frac{D_4}{M^8} \left(-15r^4 \Phi_r^2 + 3r^2 \right) + \Phi_{rr}^2 \frac{D_4}{M^8} \left(-21r^3 \Phi_r^3 + 33r \Phi_r \right) \\ &+ \Phi_{rr} \frac{D_4}{M^8} \left(-r^4 \Phi_r^6 - 19r^2 \Phi_r^4 + 36\Phi_r^2 \right) + \Phi_{rr} \frac{D_2}{M^2} \\ &- \Phi_r^7 \frac{3D_4 r^3}{M^8} - \Phi_r^5 \frac{17D_4 r}{M^8} + \Phi_r^3 \frac{\left(D_2 M^6 r^2 + 4D_4 \right)}{M^8 r} + \Phi_r \frac{2D_2}{M^2 r} - \frac{MV}{r} \,. \end{split}$$

and some $\delta > 0$,

§I. Numerical Computation: Archimedean Spirals

$$\varphi_r(R) = 0,$$

§II. Transverse Instability: Theorems

Fix V > 0, $D_4 > 0$, and D_2 . Given "compatible boundary conditions" at $r = R_i$ and all $R_i \gg 1$. **Result 1:** There exists a rigidly rotating spiral wave solution with frequency

$$\omega$$
 =

Result 2: There exists a $D_2^{\text{crit}}(R_i, D_4, V) = -\sqrt[3]{\frac{81}{4}}(7\sqrt{7} - 17)D_4V^2 \cot^2(\vartheta_i) < 0$ such that • No unstable eigenvalues for $D_2 > D_2^{\text{crit}}$. • Hopf instability with super-exponential growth as $r \to \infty$ for $D_2 < D_2^{\text{crit}}$.

An initial Gaussian perturbation is advected to the outer boundary. Both time series are for $R_{\rm i} = 50, R_{\rm o} = 75, \vartheta_{\rm i} = \pi/2 - 0.1, D_4 = V = 1$, so that $D_{2,\rm crit} \sim -0.67$. Top: $D_2 = -0.5$; Bottom: $D_2 = -0.6.$

§III. Phase Oscillator Model [Work in Progress]

Reaction-Diffusion Equation on $\Omega = \{R_{-} \le |x| \le R_{+}\} \subset \mathbb{R}^2$ $u_t = \Delta_{r,\varphi} u + f(u;\mu), \quad x \in \Omega,$ $x \in \partial \Omega.$ $\partial_{\nu} u = 0$

Relative equilibrium via corotating frame $\phi = \varphi - \omega t$ $f(u;\mu)$: 2π -periodic in u

$$\begin{cases} 0 = \Delta_{r,\phi} u - \omega u_{\phi} + f(u;\mu), \\ 0 = u(r,\phi + 2\pi) - u(r,\phi) - 2\pi u_{\phi} \\ 0 = u_{r}|_{r=R-R+1} \end{cases}$$

Waves in a Simple, Excitable or Oscillatory, Reaction-Diffusion Model Ermentrout & Rinzel 1981.

§III. Existence of Spirals on Bounded Annulus

Proof: Global homotopy: $f(u; \tau) = \tau f(u) + (1 - \tau) \int f$.

More Open Problems:

- . Existence of spirals on unbounded annulus
- u bounded annulus $\xrightarrow{\text{loc, unif}} u$ unbounded annulus 2. Wave train selection

 $\omega = \omega(k; \mu),$

k : wavenumber

 $\omega = \frac{V}{\sin(\vartheta_i)} R_i^{-1} + \mathcal{O}(R_i^{-2}),$

where $\vartheta_i \in (0, \pi/2)$ is the contact angle between the curve and the inner circle.

https://nanli.co