§1. Sharp-Interface Model [Li, Scheel, 2024]

Nan Li Arnd Scheel

§1. Proof of Theorem 2: Fenichel’s Theorem, Krupa & Szmolyan

Anchored Spirals in Sharp-Interface and Phase Oscillator Models

§11. Transverse Instability: Theorems

= Curvature flow: ¢ =V — Dk
= ¢. Normal velocity
= V. Propagation velocity of the straight-line interface ( curling-up of straight line: ¢ = V")
= D: Line tension ( curve-shortening flow: ¢ = —Dk )
= The wave front is a planar curve written in the polar coordinate
v(t, 1) = (rcos(P(t,r)), rsin(d(t,r)))
Evolution equation:
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ODE from rotating wave ansatz (¢, r) = ¢(r) — wt:
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81. Theorem 1: Existence of rigidly rotating spirals
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§1. Theorem 3: Stability of Solutions

For all e > 0, there exists § > 0 so that for all ¢ € CZ ([R, 00)) with

SUP(‘T_290’ + T_l%“‘ +|eorr]) <96, @r(R) =0,

r

we have that the solution ®(¢,r) with initial condition ¢.(r) + ¢(r) to the evolution equation
satisfies ||®(t,-)||-0 <e forallt > 0.

1. Local well-posedness and regularity: there exists a unique global solution to the evolution
equation with the initial data ¢, (R) = 0 and takes the form ¢y ~ T_12 ©rr + @r @S T — 00.

2. A priori bounds on ® and &, from super- and sub-solution (the comparison principle).

§81. Numerical Computation: Archimedean Spirals

Fix D,V > 0 and let (a(7;w), /(T;w)) denote the solution of the ODE with initial condition
(a(0),£(0)) = (ax, 0) and parameter w. Then there exists, for every a,x > 0, a unigue wy such
that limr o0 £(7; wx) = ws/V. Moreover, wy is strictly increasing in asx.

81. Proof of Theorem 1: Shooting argument

A . = Unigue correspondence between core
rlaw0:w) radius R and the angular velocity w

= Solutions are Archimedean spirals in the
farfield (r — oo):

o(r) = kr + const - logr + O(r )

» Wavenumber k = w/V

8§8l. Theorem 2: Asymptotic expansion in the large-core limit
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§1l. Transverse Instability [Cortez, Li, Mihm, Xu, Yu, Scheel, 2025]

Given ax > 0, let wx and £ = A\(«a) be the solution from Theorem 1. We then have the expan-

sions
we = Vs — 003/ 2D2Ve 3 + 0(a3),

Ma) =1/ —= —a*+O(wa), fora<(1- 5)% and some § > 0,

where oy = 1.01879297 . . . is determined by the first zero of the derivative of the Airy function,
that is, Ai'(—og) = 0, Ai'(—o) > 0 for o < oy,
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Curvature Flow: ¢ =V + Dok — Dykss

= 5. Arclength

= Geometric singular perturbationat Dy = Dy =0

= Rigidly rotating spiral for large core radius R; > 1

= Hopf bifurcation as Dy changes sign, exhibiting instabilities

Evolution Equation:
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Fix V' > 0, D4 > 0,and Dy. Given “‘compatible boundary conditions” at » = R; and all B; > 1.

Result 1: There exists a rigidly rotating spiral wave solution with frequency
V

sin(v;)

where v; € (0, 7/2) is the contact angle between the curve and the inner circle.

—{/8L(7v/T — 17) D4V 2 cot?(v) < 0 such that

W =

—1 —2
R+ O(R. ),

Result 2: There exists a DS™(R;, Dy, V

= No unstable eigenvalues for Dy > ng.
= Hopf instability with super-exponential growth as r — oo for Dy < ng.

An initial Gaussian perturbation is advected to the outer boundary. Both time series are for
R =950, Ry =759 =m/2—-0.1, Dy =V = 1,80 that Dy i1 ~ —0.67. Top: Dy = —0.5; Bottom:
Dy = —0.6.
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§l1l. Phase Oscillator Model [Work in Progress]

Reaction-Diffusion Equation on u mod 2m
QO={R_<|z| <Ry} CR?

ur = Ay pu + flu;p), €,
(9yu =0 x € 0f). 20
Relative equilibrium via

corotating frame ¢ = ¢ — wt
f(u; p): 2m-periodic in u

0= A gu —wug + flu; p),
0=u(r,¢+2m) — u(r,¢) — 27,
0= UT‘T: R_R. 0 40 20 0 20 10 60

Waves in a Simple, Excitable or Oscillatory, Reaction-Diffusion Model Ermentrout & Rinzel 1981,

8l11l. Existence of Spirals on Bounded Annulus

For ¢ # 0, there exists a solution (u, w) to the BVP. Moreover, u is strictly increasing in ¢.
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Proof: Global homotopy: f(u;7) = 7f(u
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More Open Problems:
1. Existence of spirals on unbounded annulus
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\
U hounded annulus > U ynbounded annulus

2. Wave train selection
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k . wavenumber Conjectured in [Ermentrout & Rinzel 1981]

w = w(k; ),
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